MapleLimits.mws

L'Hopital's Rule

examples

>    with(plots):

Warning, the name changecoords has been redefined

>    f:=sin(4*x)/(2*x);

f := 1/2*sin(4*x)/x

>    Limit(f,x=0);

Limit(1/2*sin(4*x)/x,x = 0)

>    value(%);

2

>    plot(f,x=-2..2,thickness=2);

[Maple Plot]

>    g:=sqrt(4-x^2)/(x-2);

g := (4-x^2)^(1/2)/(x-2)

>    Limit(g,x=2,left);

Limit((4-x^2)^(1/2)/(x-2),x = 2,left)

>    value(%);

-infinity

>    plot(g,x=0..2,thickness=2);

[Maple Plot]

>    h:=ln(x^4)/x^3;

h := ln(x^4)/x^3

>    Limit(h,x=infinity);

Limit(ln(x^4)/x^3,x = infinity)

>    value(%);

0

>    plot(h,x=1..20,thickness=2);

[Maple Plot]

>    f2:=(x^3)*cot(x);

f2 := x^3*cot(x)

>    Limit(f2,x=0,right);

Limit(x^3*cot(x),x = 0,right)

>    value(%);

0

>    plot(f2,x=-2..2,thickness=2);

[Maple Plot]

>    g2:=(1+1/x)^x;

g2 := (1+1/x)^x

>    Limit(g2,x=infinity);

Limit((1+1/x)^x,x = infinity)

>    value(%);

exp(1)

>    pic1:=plot(exp(1),x=0..100,thickness=2,color=blue):

>    pic2:=plot(g2,x=0..100,thickness=2):

>    display(pic1,pic2);

[Maple Plot]

>    h2:=(sin(x))^x;

h2 := sin(x)^x

>    plot(h2,x=0..2,thickness=2);

[Maple Plot]

>    eval(h2,x=0.0001);

.9990793900

>    eval(h2,x=0.0000001);

.9999983882

>    eval(h2,x=0.0000000001);

.9999999977

>    eval(h2,x=0.0000000000001);

1.000000000

>    Limit(h2,x=0,right);

Limit(sin(x)^x,x = 0,right)

>    value(%);

1

>